China Good quality Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

Product Description

Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling

Main products
Coupling refers to a device that connects 2 shafts or shafts and rotating parts, rotates together during the transmission of motion and power, and does not disengage under normal conditions. Sometimes it is also used as a safety device to prevent the connected parts from bearing excessive load, which plays the role of overload protection.

Couplings can be divided into rigid couplings and flexible couplings.
Rigid couplings do not have buffering property and the ability to compensate the relative displacement of 2 axes. It is required that the 2 axes be strictly aligned. However, such couplings are simple in structure, low in manufacturing cost, convenient in assembly and disassembly, and maintenance, which can ensure that the 2 axes are relatively neutral, have large transmission torque, and are widely used. Commonly used are flange coupling, sleeve coupling and jacket coupling.

Flexible coupling can also be divided into flexible coupling without elastic element and flexible coupling with elastic element. The former type only has the ability to compensate the relative displacement of 2 axes, but cannot cushion and reduce vibration. Common types include slider coupling, gear coupling, universal coupling and chain coupling; The latter type contains elastic elements. In addition to the ability to compensate the relative displacement of 2 axes, it also has the functions of buffering and vibration reduction. However, due to the strength of elastic elements, the transmitted torque is generally inferior to that of flexible couplings without elastic elements. Common types include elastic sleeve pin couplings, elastic pin couplings, quincunx couplings, tire type couplings, serpentine spring couplings, spring couplings, etc

Company Profile

 

Our Factory
Application – Photos from our partner customers

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

elastomeric coupling

Differences Between Elastomeric Couplings Made from Different Materials

Elastomeric couplings can be manufactured using various materials, each offering unique properties that influence the coupling’s performance in different applications. Here are the key differences between couplings made from rubber, polyurethane, and silicone:

1. Rubber Elastomers:

Rubber elastomers are commonly used in elastomeric couplings due to their excellent resilience, flexibility, and damping properties. They can handle a wide range of temperatures and are resistant to abrasion and wear. Rubber couplings are ideal for general-purpose applications where moderate torque and misalignment compensation are required.

2. Polyurethane Elastomers:

Polyurethane elastomers provide higher strength and load-bearing capabilities compared to rubber. They have better resistance to oils, chemicals, and harsh environments. Polyurethane couplings are suitable for applications involving higher torque, shock loads, and exposure to aggressive substances.

3. Silicone Elastomers:

Silicone elastomers offer superior thermal stability and can withstand extreme temperature variations. They exhibit excellent electrical insulation properties and are resistant to aging and weathering. Silicone couplings are often used in applications that require high-temperature resistance and electrical isolation.

4. Damping and Resilience:

Rubber generally provides better damping properties, making it effective in reducing vibrations and noise. Polyurethane offers higher resilience, which can be advantageous in applications with frequent torque spikes and shock loads. Silicone combines good damping with high-temperature resistance.

5. Environmental Compatibility:

Polyurethane and silicone couplings tend to have better resistance to chemicals, oils, and extreme temperatures, making them suitable for demanding environments. Rubber couplings may have limitations in certain aggressive chemical environments.

6. Cost and Performance Balance:

The choice of material also affects the cost of the coupling. Rubber is generally more cost-effective, while polyurethane and silicone may be more expensive but offer specific performance advantages in certain applications.

When selecting an elastomeric coupling, it is crucial to consider the specific requirements of the application, such as torque, speed, misalignment, temperature range, and chemical exposure. The material choice should align with the demands of the operating conditions to ensure optimal coupling performance and longevity.

elastomeric coupling

Impact of Temperature Variation on Elastomeric Coupling Performance

Temperature variation can significantly affect the performance of elastomeric couplings due to the properties of the elastomeric material used in their construction. Here are the key ways temperature variation can influence coupling performance:

1. Elasticity and Flexibility:

Elastomeric materials exhibit changes in their elasticity and flexibility with temperature. At lower temperatures, the elastomer may become stiffer, reducing its ability to compensate for misalignments and absorb vibrations. Conversely, at higher temperatures, the elastomer may become softer, affecting the coupling’s torsional stiffness and load-carrying capacity.

2. Damping Characteristics:

Temperature changes can impact the damping characteristics of the elastomer. Elastomeric couplings rely on the damping properties of the material to absorb vibrations and shocks. Temperature-related variations can alter the material’s ability to dampen vibrations, affecting the coupling’s performance in reducing dynamic loads.

3. Wear and Degradation:

Elastomeric materials can undergo wear and degradation with temperature fluctuations. Excessive heat can accelerate the aging process of the elastomer, leading to material hardening, cracking, and reduced service life. Extreme temperature conditions may also cause the elastomer to soften and lose its structural integrity.

4. Tolerance to High Temperatures:

Some elastomeric couplings are designed to withstand higher temperatures than others. Extreme heat can cause traditional elastomeric materials to exceed their temperature limits, leading to failure or reduced performance. Specialized high-temperature elastomers or alternative materials may be required for applications operating in elevated temperature environments.

5. Torque and Power Ratings:

Temperature changes can influence the torque and power ratings of the elastomeric coupling. It is essential to consider the temperature variation when selecting a coupling for a specific application to ensure that it can handle the expected loads safely and reliably.

6. Environmental Conditions:

Elastomeric couplings operating in extreme temperature environments may also encounter other environmental factors like humidity, chemicals, and exposure to harsh substances, which can further impact the material properties and coupling performance.

To mitigate the effects of temperature variation on elastomeric coupling performance, it is crucial to select a coupling with suitable elastomeric material capable of withstanding the expected temperature range. Regular maintenance, periodic inspection, and adherence to the manufacturer’s temperature limits and guidelines will help ensure optimal performance and prolong the lifespan of the coupling in temperature-varying operating conditions.

elastomeric coupling

Advantages of Using Elastomeric Couplings in Industrial Applications

Elastomeric couplings offer several advantages that make them well-suited for various industrial applications. These advantages stem from their flexible design and the use of elastomeric materials like rubber or polyurethane. Below are the key benefits of using elastomeric couplings:

1. Misalignment Compensation:

Elastomeric couplings can tolerate and compensate for angular, parallel, and axial misalignments between connected shafts. This ability to handle misalignment reduces stress on equipment and extends the lifespan of both the coupling and the connected machinery.

2. Vibration and Shock Absorption:

The elastomeric material in the coupling acts as a natural vibration isolator, absorbing shocks and dampening vibrations. This feature is essential for reducing noise, protecting sensitive components, and enhancing the overall smoothness of operation in industrial systems.

3. No Lubrication Required:

Elastomeric couplings do not need regular lubrication, making them low-maintenance solutions for many industrial applications. This reduces the time and effort spent on maintenance tasks and minimizes the risk of contamination or leakage in certain environments.

4. Cost-Effectiveness:

Compared to some other types of couplings, elastomeric couplings are generally more cost-effective. Their simple construction and use of elastomeric materials make them affordable choices for power transmission in various industries.

5. Electrically Insulating:

Elastomeric couplings are electrically insulating, which can be advantageous in applications where electrical isolation is necessary to prevent current flow between shafts or connected equipment.

6. Fail-Safe Design:

In the event of elastomeric material failure, elastomeric couplings have a fail-safe design that allows them to continue transmitting torque, albeit with some reduction in performance. This feature ensures continued operation and prevents sudden catastrophic failures.

7. Easy Installation:

Elastomeric couplings are relatively simple to install, saving time and effort during the setup of industrial machinery.

8. Diverse Industrial Applications:

Elastomeric couplings find use in various industrial applications, including pumps, compressors, conveyor systems, machine tools, blowers, fans, and more.

Due to their ability to handle misalignment, provide vibration dampening, and require minimal maintenance, elastomeric couplings are widely utilized in industrial settings where reliability, efficiency, and cost-effectiveness are critical considerations.

China Good quality Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling  China Good quality Drive Pipe Spline Shaft Disc Flange Gear Rubber Jaw Motor Spacer Beam Rigid Fluid Chain Nm Mh HRC Pin Fenaflex Spacer Elastomeric Flexible Gear Coupling
editor by CX 2024-04-29