Tag Archives: good chain

China Good quality Fluid Coupling Chain Jaw Flexible Flange Gear Rigid Spacer Motor Shaft Universal Half Reducer Spline Stainless Steel Elastomeric Coupling

Product Description

  Fluid Coupling Chain Jaw Flexible Flange Gear Rigid Spacer Motor Shaft Universal Half Reducer Spline Stainless Steel Elastomeric coupling

A fluid coupling is a torque converter used in mechanical power transmission systems to transmit torque from 1 rotating shaft to another. It consists of 2 halves, the impeller, and the runner, which are placed in a housing filled with a hydraulic fluid such as oil or water.

When one-half of the fluid coupling is rotated, it creates a fluid flow within the housing, which in turn causes the other half to rotate. The fluid coupling uses fluid dynamics principles to transmit torque between the 2 halves, with the amount of torque being proportional to the speed difference between the 2 shafts.

One of the key advantages of a fluid coupling is its ability to provide a smooth and gradual torque transfer between the 2 shafts, without any mechanical connection. This can help to reduce wear and tear on the equipment and improve overall system efficiency.

Fluid couplings are commonly used in various industrial applications, including mining, construction, and marine equipment. They are also used in automotive transmissions, where they can help provide a smooth and efficient torque transfer between the engine and the wheels.

Overall, a fluid coupling provides a reliable and efficient way to transmit torque between 2 rotating shafts, without any mechanical connection. With their ability to provide a smooth and gradual torque transfer, they are a popular choice for a wide range of industrial and automotive applications.

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

elastomeric coupling

Differences Between Elastomeric Couplings Made from Different Materials

Elastomeric couplings can be manufactured using various materials, each offering unique properties that influence the coupling’s performance in different applications. Here are the key differences between couplings made from rubber, polyurethane, and silicone:

1. Rubber Elastomers:

Rubber elastomers are commonly used in elastomeric couplings due to their excellent resilience, flexibility, and damping properties. They can handle a wide range of temperatures and are resistant to abrasion and wear. Rubber couplings are ideal for general-purpose applications where moderate torque and misalignment compensation are required.

2. Polyurethane Elastomers:

Polyurethane elastomers provide higher strength and load-bearing capabilities compared to rubber. They have better resistance to oils, chemicals, and harsh environments. Polyurethane couplings are suitable for applications involving higher torque, shock loads, and exposure to aggressive substances.

3. Silicone Elastomers:

Silicone elastomers offer superior thermal stability and can withstand extreme temperature variations. They exhibit excellent electrical insulation properties and are resistant to aging and weathering. Silicone couplings are often used in applications that require high-temperature resistance and electrical isolation.

4. Damping and Resilience:

Rubber generally provides better damping properties, making it effective in reducing vibrations and noise. Polyurethane offers higher resilience, which can be advantageous in applications with frequent torque spikes and shock loads. Silicone combines good damping with high-temperature resistance.

5. Environmental Compatibility:

Polyurethane and silicone couplings tend to have better resistance to chemicals, oils, and extreme temperatures, making them suitable for demanding environments. Rubber couplings may have limitations in certain aggressive chemical environments.

6. Cost and Performance Balance:

The choice of material also affects the cost of the coupling. Rubber is generally more cost-effective, while polyurethane and silicone may be more expensive but offer specific performance advantages in certain applications.

When selecting an elastomeric coupling, it is crucial to consider the specific requirements of the application, such as torque, speed, misalignment, temperature range, and chemical exposure. The material choice should align with the demands of the operating conditions to ensure optimal coupling performance and longevity.

elastomeric coupling

Common Industries Where Elastomeric Couplings Find Significant Usage

Elastomeric couplings are versatile components widely used in various industries to facilitate efficient power transmission and protect machinery from torsional vibrations and misalignments. Some of the common industries where elastomeric couplings find significant usage include:

1. Manufacturing and Industrial Machinery:

Elastomeric couplings are commonly employed in manufacturing machinery such as conveyor systems, pumps, compressors, mixers, and machine tools. They help connect the motor and driven equipment, providing smooth power transmission and reducing vibrations.

2. Automotive:

In the automotive industry, elastomeric couplings are used in drivetrain systems, including propeller shafts, steering systems, and powertrain components. They offer excellent damping characteristics to absorb vibrations and shocks during vehicle operation.

3. Aerospace and Defense:

Elastomeric couplings play a crucial role in aerospace and defense applications, where lightweight and reliable power transmission is essential. They are used in aircraft engines, rotor systems, missile guidance systems, and various other aerospace components.

4. Energy and Power Generation:

Elastomeric couplings are used in power generation plants, including thermal, hydroelectric, and wind power plants. They connect generators to turbines and help absorb torsional vibrations, ensuring stable and efficient power transmission.

5. Oil and Gas:

In the oil and gas industry, elastomeric couplings are used in various equipment, such as pumps, compressors, and drilling rigs. They provide reliable power transmission and help protect the equipment from dynamic loads and vibrations.

6. Mining and Construction:

Elastomeric couplings are commonly found in mining and construction machinery, such as crushers, excavators, and conveyor systems. They enable efficient power transfer and help withstand heavy loads and harsh operating conditions.

7. Marine:

In marine applications, elastomeric couplings are used in propulsion systems and marine pumps. They offer excellent resistance to seawater and provide reliable power transmission in marine vessels.

8. Renewable Energy:

In the renewable energy sector, elastomeric couplings are used in wind turbines and solar tracking systems. They help adjust the alignment between the components and absorb wind and solar-induced dynamic loads.

Elastomeric couplings’ ability to dampen vibrations, compensate for misalignments, and provide flexibility makes them suitable for a wide range of industrial applications. Their widespread usage across diverse industries highlights their importance in enhancing equipment reliability, reducing maintenance costs, and improving overall operational efficiency.

elastomeric coupling

Can Elastomeric Couplings Handle Misalignment Between Shafts Effectively?

Yes, elastomeric couplings are designed to handle misalignment between shafts effectively. Their flexible and resilient elastomeric material allows them to accommodate various types of misalignment, including:

  • Angular Misalignment: When the axes of the two connected shafts are not collinear and form an angle, elastomeric couplings can flex and compensate for this angular misalignment. This is crucial in applications where shafts are not perfectly aligned due to manufacturing tolerances, installation errors, or structural settling.
  • Parallel Misalignment: When the axes of the two shafts are not perfectly parallel but have some lateral offset, elastomeric couplings can accommodate this misalignment by allowing a certain degree of lateral movement between the hubs.
  • Axial Misalignment: When the two shafts are not perfectly aligned along their common axis, causing a gap or overlap between them, elastomeric couplings can flex and absorb this axial misalignment, preventing excessive forces on the connected machinery.

The elastomeric material used in these couplings acts as a natural shock absorber and isolates vibrations, which helps prevent excessive wear on equipment and reduces the risk of damage to connected components. Elastomeric couplings are also capable of dampening transient vibrations caused by sudden torque fluctuations or shock loads.

However, it is important to note that while elastomeric couplings can handle moderate misalignments, they have their limitations. Large misalignments beyond their design capabilities may lead to premature wear and reduced coupling life. In such cases, special designs or alternative coupling types may be more suitable.

Overall, elastomeric couplings are a popular choice in many industrial applications due to their ability to effectively handle misalignment, providing reliable and smooth power transmission while protecting machinery from excessive stresses and vibrations.

China Good quality Fluid Coupling Chain Jaw Flexible Flange Gear Rigid Spacer Motor Shaft Universal Half Reducer Spline Stainless Steel Elastomeric Coupling  China Good quality Fluid Coupling Chain Jaw Flexible Flange Gear Rigid Spacer Motor Shaft Universal Half Reducer Spline Stainless Steel Elastomeric Coupling
editor by CX 2024-04-08

China Good quality Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling

Product Description

Stainless Steel Coupling Transmission Parts Gear High Quality Good Price Gear Roller Chain Couplings Nm Flange Flexible Elastomeric Stainless Steel Coupling

We are the leading top Chinese coupling manufacturer, and are specializing in various high quality coupling.
1. Material: Cast iron, Rubber.
2. OEM and ODM are available
3. High efficient in transmission
4. Finishing: Painted.
5. High quality with competitive price
6. Different models suitable for your different demands
7. Stock for different bore size on both sides available.
8. Application in wide range of environment.
9. Quick and easy mounting and disassembly.
10. Resistant to oil and electrical insulation.
11. Identical clockwise and anticlockwise rotational characteristics.
12. Small dimension, low weight, high transmitted torque.

13. It has good performance on compensating the misalignment.

Fluid couplings:

Features:

Improve the starting capability of electric motor, protect motor against overloading, damp shock, load

fluctuation and torsional vibration, and balance and load distribution in case of multimotor drives.

Applications:

Belt conveyers, csraper conveyers, and conveyers of all kinds Bucket elevators, ball mills, hoisters, crushers,

excavators, mixers, straighteners, cranes, etc.

Flange Flexible Coupling:

Flexible Coupling Model is widely used for its compact designing,easy installation,convenientmaintenance,small size and

light weight.As long as the’relative displacement between shafts is kept within the specified tolerance,the coupling will

operate the best function and a longer working life,thus it is greatly demanded in medium and minorpower transmission

systems drive by moters,such as speed reducers,hoists,compressor,spining &weaving machines and ball mills,permittable

relative displacement:Radial displacement 0.2-0.6mm ; Angel displacemente 0o 30′–1o 30′
 

Jaw Couplings:

Click here for more types of couplings

 

Our Services:

1.Design Services
Our design team has experience in cardan shaft relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2.Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3.Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4.Research & Development
We usually research the new needs of the market and develop the new model when there is new cars in the market.

5.Quality Control
Every step should be special test by Professional Staff according to the standard of ISO9001 and TS16949.

Company Information:

 

 

 

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

elastomeric coupling

Elastomeric Couplings and Handling Torque Spikes and Sudden Load Changes

Elastomeric couplings are designed to handle torque spikes and sudden changes in load, thanks to the inherent flexibility and damping properties of the elastomeric material. Here’s how they manage such scenarios:

1. Damping Effect:

When a sudden increase in torque or load occurs in the machinery, the elastomeric coupling’s flexible element acts as a buffer, absorbing and dissipating the excess energy. This damping effect helps prevent the transmission of shock loads to the connected equipment, reducing the risk of damage.

2. Torsional Compliance:

Elastomeric couplings have a certain level of torsional compliance, which allows them to tolerate brief torque spikes without transmitting excessive forces to the connected shafts. This torsional compliance is essential in applications where sudden load changes are common.

3. Misalignment Compensation:

Elastomeric couplings can accommodate some degree of misalignment between the shafts. When torque spikes or sudden loads lead to minor misalignments, the coupling can flex and compensate for these changes, reducing the stress on the machinery.

4. Vibration Absorption:

If torque spikes or sudden loads result in torsional vibrations, the elastomeric material can absorb and dampen these vibrations, preventing them from propagating through the system and causing additional damage.

5. Material Selection:

The selection of appropriate elastomeric materials and coupling design factors in the anticipated torque and load requirements. Couplings can be designed to handle specific torque spikes and loads based on the elastomer’s hardness and properties.

Despite their ability to handle torque spikes and sudden load changes, it is essential to consider the specific application requirements when choosing an elastomeric coupling. Factors such as the magnitude and frequency of torque spikes, load characteristics, and operating conditions must be taken into account to ensure the coupling’s compatibility and reliability.

Properly selected and maintained elastomeric couplings provide effective torque transmission and help protect connected equipment from the impact of sudden changes in load, contributing to the overall efficiency and longevity of the machinery.

elastomeric coupling

Standard Specifications and Industry Norms for Elastomeric Couplings

Yes, there are standard specifications and industry norms that govern the design, manufacturing, and performance of elastomeric couplings. These standards ensure that elastomeric couplings meet specific criteria for quality, reliability, and safety. Some of the widely recognized standards and norms for elastomeric couplings include:

1. American National Standards Institute (ANSI):

ANSI provides standards and guidelines for elastomeric couplings used in various industrial applications. ANSI standards cover design considerations, dimensions, materials, torque ratings, and performance testing for elastomeric couplings.

2. International Organization for Standardization (ISO):

ISO develops international standards for elastomeric couplings, ensuring consistency and interoperability across different regions and industries. ISO standards cover coupling performance, dimensions, and testing methods.

3. American Society of Mechanical Engineers (ASME):

ASME standards include guidelines for elastomeric couplings, providing information on design, installation, maintenance, and inspection practices to ensure safe and reliable operation.

4. American Gear Manufacturers Association (AGMA):

AGMA publishes standards related to elastomeric couplings used in power transmission systems. These standards cover coupling design, selection, application, and maintenance guidelines.

5. European Committee for Standardization (CEN):

CEN develops European standards for elastomeric couplings to promote uniformity and compliance across European countries.

Manufacturers often use these standards as a reference when designing and testing elastomeric couplings. Compliance with these standards helps ensure that the couplings meet minimum quality and performance requirements. Additionally, many industries have specific regulations and norms related to safety, which elastomeric couplings must adhere to when used in their applications.

When selecting an elastomeric coupling, it is essential to verify if it complies with the relevant standards and industry norms to guarantee its suitability and safety for your specific application. Manufacturers typically provide documentation stating the compliance of their couplings with the applicable standards.

elastomeric coupling

Maintenance Requirements for Elastomeric Couplings to Ensure Optimal Performance and Longevity

Elastomeric couplings are known for their relatively low maintenance requirements, but regular inspection and care are essential to ensure their optimal performance and longevity. Here are the key maintenance practices for elastomeric couplings:

1. Visual Inspection:

Regularly inspect the coupling for signs of wear, damage, or misalignment. Look for cracks, tears, or deformations in the elastomeric element and any visible signs of deterioration.

2. Lubrication:

Most elastomeric couplings do not require lubrication, as the elastomeric material acts as a self-lubricating element. However, check with the manufacturer’s recommendations to ensure your specific coupling type does not require any lubrication.

3. Misalignment Check:

Monitor the misalignment between the connected shafts to ensure it stays within the coupling’s allowable limits. Excessive misalignment can lead to premature wear and reduced coupling life.

4. Temperature Limits:

Keep the operating temperature within the specified limits for the elastomeric material. Extreme temperatures can degrade the elastomer and affect its flexibility and performance.

5. Environmental Protection:

Protect the coupling from exposure to chemicals, abrasive particles, and other harsh environmental elements that may accelerate wear and deterioration of the elastomeric material.

6. Regular Maintenance Schedule:

Follow a maintenance schedule recommended by the manufacturer or based on the specific operating conditions of your application. Regularly inspect and replace elastomeric couplings as needed to prevent unexpected failures.

7. Proper Installation:

Ensure the coupling is correctly installed following the manufacturer’s guidelines. Proper installation helps maintain the coupling’s alignment and prevents undue stresses on the elastomeric element.

8. Load Monitoring:

Regularly monitor the load and torque requirements of your application. Avoid overloading the coupling beyond its specified capacity, as this can lead to premature failure.

By following these maintenance practices, you can extend the life of your elastomeric couplings and ensure they continue to provide reliable and efficient power transmission in your industrial system. Remember that each application may have specific maintenance needs, so always refer to the manufacturer’s instructions and consult with experts if needed.

China Good quality Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling  China Good quality Stainless Steel Coupling Transmission Machined Parts Gear Roller Chain Couplings Nm Mh Flange Elastic Spider Disc Elastomeric Rigid Jaw Flexible Shaft Coupling
editor by CX 2024-02-18